The cloned rat vanilloid receptor VR1 mediates both R-type binding and C-type calcium response in dorsal root ganglion neurons.
نویسندگان
چکیده
[(3)H]Resiniferatoxin (RTX) binding and calcium uptake by rat dorsal root ganglion (DRG) neurons show distinct structure-activity relations, suggestive of independent vanilloid receptor (VR) subtypes. We have now characterized ligand binding to rat VR1 expressed in human embryonic kidney (HEK293) and Chinese hamster ovary (CHO) cells and compared the structure-activity relations with those for calcium mobilization. Human embryonic kidney cells (HEK293/VR1 cells) and Chinese hamster ovary cells transfected with VR1 (CHO/VR1 cells) bound [(3)H]RTX with affinities of 84 and 103 pM, respectively, and positive cooperativity (Hill numbers were 2.1 and 1.8). These parameters are similar to those determined with rat DRG membranes expressing native VRs (a K(d) of 70 pM and a Hill number of 1.7). The typical vanilloid agonists olvanil and capsaicin inhibited [(3)H]RTX binding to HEK293/VR1 cells with K(i) values of 0.4 and 4.0 microM, respectively. The corresponding values in DRG membranes were 0.3 and 2.5 microM. HEK293/VR1 cells and DRG membranes also recognized the novel vanilloids isovelleral and scutigeral with similar K(i) values (18 and 20 microM in HEK293/VR1 cells; 24 and 21 microM in DRGs). The competitive vanilloid receptor antagonist capsazepine inhibited [(3)H]RTX binding to HEK293/VR1 cells with a K(i) value of 6.2 microM and binding to DRG membranes with a K(i) value of 8.6 microM. RTX and capsaicin induced calcium mobilization in HEK293/VR1 cells with EC(50) values of 4.1 and 82 nM, respectively. Thus, the relative potencies of RTX (more potent for binding) and capsaicin (more potent for calcium mobilization) are similar in DRG neurons and cells transfected with VR1. We conclude that VR1 can account for both the ligand binding and calcium uptake observed in rat DRG neurons.
منابع مشابه
Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy.
Sensitivity to the pungent vanilloid, capsaicin, defines a subpopulation of primary sensory neurons that are mainly polymodal nociceptors. The recently cloned vanilloid receptor subtype 1 (VR1) is activated by capsaicin and noxious heat. Using combined in situ hybridization and histochemical methods, we have characterized in sensory ganglia the expression of VR1 mRNA. We show that this receptor...
متن کاملComparison of effects of anandamide at recombinant and endogenous rat vanilloid receptors.
BACKGROUND Anandamide, an endogenous lipid, activates both cannabinoid (CB(1)) and vanilloid (VR1) receptors, both of which are co-expressed in rat dorsal root ganglion (DRG) cells. Activation of either receptor results in analgesia but the relative contribution of CB(1) and VR1 in anandamide-induced analgesia remains controversial. Here we compare the in vitro pharmacology of recombinant and e...
متن کاملVersatile regulation of cytosolic Ca2+ by vanilloid receptor I in rat dorsal root ganglion neurons.
Analysis of small dorsal root ganglion (DRG) neurons revealed novel functions for vanilloid receptor 1 (VR1) in the regulation of cytosolic Ca(2+). The VR1 agonist capsaicin induced Ca(2+) mobilization from intracellular stores in the absence of extracellular Ca(2+), and this release was inhibited by the VR1 antagonist capsazepine but was unaffected by the phospholipase C inhibitor xestospongin...
متن کاملAnandamide activates vanilloid receptor 1 (VR1) at acidic pH in dorsal root ganglia neurons and cells ectopically expressing VR1.
The vanilloid receptor type 1 (VR1) is a heat-activated ionophore preferentially expressed in nociceptive neurons of trigeminal and dorsal root ganglia (DRG). VR1, which binds and is activated by capsaicin and other vanilloid compounds, was noted to interact with the endocannabinoid anandamide (ANA) and certain inflammatory metabolites of arachidonic acid in a pH-dependent manner. At pH < or = ...
متن کاملLow-threshold heat receptor in chick sensory neurons is upregulated independently of nerve growth factor after nerve injury.
In mammals, the cloned low-threshold heat receptor, vanilloid receptor subtype 1 (VR1), is involved in the genesis of thermal hyperalgesia after inflammation. However, there is evidence that VR1 is not involved in the thermal hyperalgesia that occurs after nerve injury. In search for other heat receptors which might be involved in this phenomenon, we previously demonstrated that chick dorsal ro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 56 3 شماره
صفحات -
تاریخ انتشار 1999